EXPERIMENT 6

GRAIN SIZE ANALYSIS

(SIEVE AND HYDROMETER ANALYSIS)

Purpose:

This test is performed to determine the percentage of different grain sizes contained within a soil. The mechanical or sieve analysis is performed to determine the distribution of the coarser, larger-sized particles, and the hydrometer method is used to determine the distribution of the finer particles.

Standard Reference:

ASTM D 422 - Standard Test Method for Particle-Size Analysis of Soils

Significance:

The distribution of different grain sizes affects the engineering properties of soil. Grain size analysis provides the grain size distribution, and it is required in classifying the soil.

Equipment:

Balance, Set of sieves, Cleaning brush, Sieve shaker, Mixer (blender), 152H Hydrometer, Sedimentation cylinder, Control cylinder, Thermometer, Beaker, Timing device.

Test Procedure:

Sieve Analysis:

- (1) Write down the weight of each sieve as well as the bottom pan to be used in the analysis.
- (2) Record the weight of the given dry soil sample.
- (3) Make sure that all the sieves are clean, and assemble them in the ascending order of sieve numbers (#4 sieve at top and #200 sieve at bottom). Place the pan below #200 sieve. Carefully pour the soil sample into the top sieve and place the cap over it.
- (4) Place the sieve stack in the mechanical shaker and shake for 10 minutes.
- (5) Remove the stack from the shaker and carefully weigh and record the weight of each sieve with its retained soil. In addition, remember to weigh and record the weight of the bottom pan with its retained fine soil.

Hydrometer Analysis:

- (1) Take the fine soil from the bottom pan of the sieve set, place it into a beaker, and add 125 mL of the dispersing agent (sodium hexametaphosphate (40 g/L)) solution. Stir the mixture until the soil is thoroughly wet. Let the soil soak for at least ten minutes.
- (2) While the soil is soaking, add 125mL of dispersing agent into the control cylinder and fill it with distilled water to the mark. Take the

reading at the top of the meniscus formed by the hydrometer stem and the control solution. A reading less than zero is recorded as a negative (-) correction and a reading between zero and sixty is recorded as a positive (+) correction. This reading is called the zero correction. The meniscus correction is the difference between the top of the meniscus and the level of the solution in the control jar (Usually about +1). Shake the control cylinder in such a way that the contents are mixed thoroughly. Insert the hydrometer and thermometer into the control cylinder and note the zero correction and temperature respectively.

- (3) Transfer the soil slurry into a mixer by adding more distilled water, if necessary, until mixing cup is at least half full. Then mix the solution for a period of two minutes.
- (4) Immediately transfer the soil slurry into the empty sedimentation cylinder. Add distilled water up to the mark.
- (5) Cover the open end of the cylinder with a stopper and secure it with the palm of your hand. Then turn the cylinder upside down and back upright for a period of one minute. (The cylinder should be inverted approximately 30 times during the minute.)
- (6) Set the cylinder down and record the time. Remove the stopper from the cylinder. After an elapsed time of one minute and forty seconds, very slowly and carefully insert the hydrometer for the first reading.
 (Note: It should take about ten seconds to insert or remove the hydrometer to minimize any disturbance, and the release of the

hydrometer should be made as close to the reading depth as possible to avoid excessive bobbing).

- (7) The reading is taken by observing the top of the meniscus formed by the suspension and the hydrometer stem. The hydrometer is removed slowly and placed back into the control cylinder. Very gently spin it in control cylinder to remove any particles that may have adhered.
- (8) Take hydrometer readings after elapsed time of 2 and 5, 8, 15, 30, 60 minutes and 24 hours

Data Analysis:

Sieve Analysis:

- (1) Obtain the mass of soil retained on each sieve by subtracting the weight of the empty sieve from the mass of the sieve + retained soil, and record this mass as the weight retained on the data sheet. The sum of these retained masses should be approximately equals the initial mass of the soil sample. A loss of more than two percent is unsatisfactory.
- (2) Calculate the percent retained on each sieve by dividing the weight retained on each sieve by the original sample mass.
- (3) Calculate the percent passing (or percent finer) by starting with 100 percent and subtracting the percent retained on each sieve as a cumulative procedure.

For example: Total mass = 500 g

Mass retained on No. 4 sieve = 9.7 g

For the No.4 sieve: Quantity passing = Total mass - Mass retained = 500 - 9.7 = 490.3 g The percent retained is calculated as; % retained = Mass retained/Total mass = (9.7/500) X 100 = 1.9 % From this, the % passing = 100 - 1.9 = 98.1 % For the No. 10 sieve:

Quantity passing = Mass arriving - Mass retained = 490.3 - 39.5 = 450.8 g % Retained = (39.5/500) X 100 = 7.9 % % Passing = 100 - 1.9 - 7.9 = 90.2 % (Alternatively, use % passing = % Arriving - % Retained For No. 10 sieve = 98.1 - 7.9 = 90.2 %)

- (4) Make a semilogarithmic plot of grain size vs. percent finer.
- (5) Compute C_c and C_u for the soil.

Hydrometer Analysis:

- (1) Apply meniscus correction to the actual hydrometer reading.
- (2) From Table 1, obtain the effective hydrometer depth L in cm (for meniscus corrected reading).

- (3) For known G_s of the soil (if not known, assume 2.65 for this lab purpose), obtain the value of K from Table 2.
- (4) Calculate the equivalent particle diameter by using the following formula:

$$D = K \sqrt{\frac{L}{t}}$$

Where t is in minutes, and D is given in mm.

- (5) Determine the temperature correction C_T from Table 3.
- (6) Determine correction factor "a" from Table 4 using G_s .
- (7) Calculate corrected hydrometer reading as follows:

 $R_c = R_{ACTUAL}$ - zero correction + C_T

(8) Calculate percent finer as follows:

$$P = \frac{Rc \times a}{w_s} \times 100$$

Where W_S is the weight of the soil sample in grams.

(9) Adjusted percent fines as follows:

$$\mathsf{P}_{\mathsf{A}} = \frac{\mathsf{P} \times \mathsf{F}_{200}}{100}$$

 F_{200} = % finer of #200 sieve as a percent

(10) Plot the grain size curve D versus the adjusted percent finer on the semilogarithmic sheet.

Hydrometer 151H		Hydrometer 152H							
Actual Hydrometer	Effective	Actual Hydrometer	Effective	Actual Hydrometer	Effective				
Reading	Depth, L (cm)	Reading	Depth, L (cm)	Reading	Depth, L (cm)				
1.000	16.3	0	16.3	31	11.2				
1.001	16.0	1	16.1	32	11.1				
1.002	15.8	2	16.0	33	10.9				
1.003	15.5	3	15.8	34	10.7				
1.004	15.2	4	15.6	35	10.6				
1.005	15.0	5	15.5	36	10.4				
1.006	14.7	6	15.3	37	10.2				
1.007	14.4	7	15.2	38	10.1				
1.008	14.2	8	15.0	39	9.9				
1.009	13.9	9	14.8	40	9.7				
1.010	13.7	10	14.7	41	9.6				
1.011	13.4	11	14.5	42	9.4				
1.012	13.1	12	14.3	43	9.2				
1.013	12.9	13	14.2	44	9.1				
1.014	12.6	14	14.0	45	8.9				
1.015	12.3	15	13.8	46	8.8				
1.016	12.1	16	13.7	47	8.6				
1.017	11.8	17	13.5	48	8.4				
1.018	11.5	18	13.3	49	8.3				
1.019	11.3	19	13.2	50	8.1				
1.020	11.0	20	13.0	51	7.9				
1.021	10.7	21	12.9	52	7.8				
1.022	10.5	22	12.7	53	7.6				
1.023	10.2	23	12.5	54	7.4				
1.024	10.0	24	12.4	55	7.3				
1.025	9.7	25	12.2	56	7.1				
1.026	9.4	26	12.0	57	7.0				
1.027	9.2	27	11.9	58	6.8				
1.028	8.9	28	11.7	59	6.6				
1.029	8.6	29	11.5	60	6.5				
1.030	8.4	30	11.4						
1.031	8.1								
1.032	7.8								
1.033	7.6								
1.034	7.3								
1.035	7.0								
1.036	6.8								
1.037	6.5								
1.038	6.2								
1.039	5.9								

Table 1. Values of Effective Depth Based on Hydrometer and Sedimentation Cylinder of Specific Sizes

Temperature	Specific Gravity of Soil Particles												
$^{\circ}C$	1												
	2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80												
16	0.01510	0.01505	0.01481	0.01457	0.01435	0.01414	0.0394	0.01374	0.01356				
17	0.01511	0.01486	0.01462	0.01439	0.01417	0.01396	0.01376	0.01356	0.01338				
18	0.01492	0.01467	0.01443	0.01421	0.01399	0.01378	0.01359	0.01339	0.01321				
19	0.01474	0.01449	0.01425	0.01403	0.01382	0.01361	0.01342	0.01323	0.01305				
20	0.01456	0.01431	0.01408	0.01386	0.01365	0.01344	0.01325	0.01307	0.01289				
21	0.01438	0.01414	0.01391	0.01369	0.01348	0.01328	0.01309	0.01291	0.01273				
22	0.01421	0.01397	0.01374	0.01353	0.01332	0.01312	0.01294	0.01276	0.01258				
23	0.01404	0.01381	0.01358	0.01337	0.01317	0.01297	0.01279	0.01261	0.01243				
24	0.01388	0.01365	0.01342	0.01321	0.01301	0.01282	0.01264	0.01246	0.01229				
25	0.01372	0.01349	0.01327	0.01306	0.01286	0.01267	0.01249	0.01232	0.01215				
26	0.01357	0.01334	0.01312	0.01291	0.01272	0.01253	0.01235	0.01218	0.01201				
27	0.01342	0.01319	0.01297	0.01277	0.01258	0.01239	0.01221	0.01204	0.01188				
28	0.01327	0.01304	0.01283	0.01264	0.01244	0.01255	0.01208	0.01191	0.01175				
29	0.01312	0.01290	0.01269	0.01269	0.01230	0.01212	0.01195	0.01178	0.01162				
30	0.01298	0.01276	0.01256	0.01236	0.01217	0.01199	0.01182	0.01165	0.01149				

Table 2. Values of k for Use in Equation for Computing Diameter of Particle in Hydrometer Analysis

Temperature	factor C _T
$^{\circ}C$	
15	1.10
16	-0.90
17	-0.70
18	-0.50
19	-0.30
20	0.00
21	+0.20
22	+0.40
23	+0.70
24	+1.00
25	+1.30
26	+1.65
27	+2.00
28	+2.50
29	+3.05
30	+3.80

Table 3. Temperature Correction Factors C_T

Table 4.	Correction	Factors	a for	Unit	Weight	of Solids
----------	------------	---------	-------	------	--------	-----------

Unit Weight of	Correction
Soil Solids,	factor
g/cm ³	а
2.85	0.96
2.80	0.97
2.75	0.98
2.70	0.99
2.65	1.00
2.60	1.01
2.55	1.02
2.50	1.04

EXAMPLE DATA

Grain Size Analysis

Sieve Analysis

Date Tested: September 15, 2002

Tested By: CEMM315 Class, Group A

Project Name: CEMM315 Lab

Sample Number: B-1, ST-1, 2'-3. 5'

Visual Classification of Soil: Brown Clayey to silty sand, trace fine gravel

	0.0
Weight of Container:	<u>198.5 g</u> m
Wt. Container+Dry Soil:	<u>722.3</u> gm
Wt. of Dry Sample:	<u>523.8</u> gm

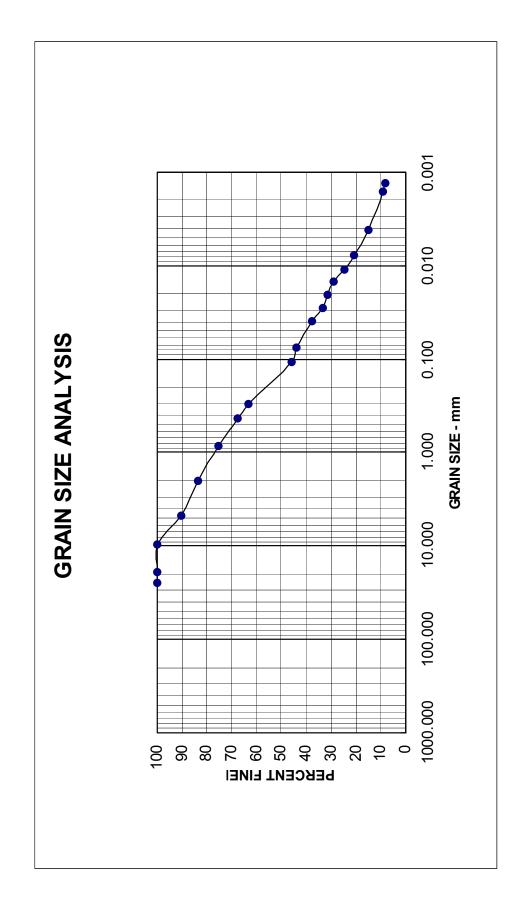
Sieve Number	Diameter (mm)	Mass of Empty Sieve (g)	mpty Sieve+Soil		Percent Retained	Percent Passing
4	4. 7 5	116.23	166.13	49.9	9.5	90.5
10	2.0	99.2 7	135.77	36.5	7.0	83.5
20	0.84	97.58	139.68	42.1	8.0	7 5.5
40	0.425	98.96	138.96	40.0	7.6	67.8
60	0.25	91.46	114.46	23.0	4.4	63.4
140	0.106	93.15	184.15	91.0	17.4	46.1
200	0.075	90.92	101.12	10.2	1.9	44.1
Pan		70.19	301.19	231.0	44.1	0.0
			Total Weight=	523. 7		

* Percent passing=100-cumulative percent retained.

From Grain Size Distribution Curve:

$$C_{\mu} = \frac{0.25}{0.002} = 125, \quad C_{c} = \frac{(0.017)^{2}}{0.25 \times 0.002} = 0.58$$

Unified Classification of Soil:


<u>sc/sm</u>

Hydrometer Analysis

Test Date: September 15, 2002 Tested By: CEMM315 Class, Group A Hydrometer Number (if known): 152 H Specific Gravity of Solids: 2.56 Dispersing Agent: Sodium Hexametaphosphate Weight of Soil Sample: 50.0 gm Zero Correction: ± 6 Meniscus Correction: ± 1

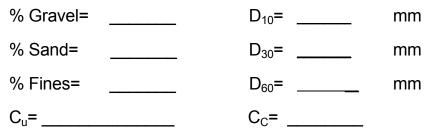
Date	Time	Elapsed Time (min)	Temp. ^o C	Actual Hydro. Rdg. R _a	Hyd. Corr. for Meniscus	L from Table 1	K from Table 2	D mm	C⊤ from Table 3	a from Table 4	Corr. Hydr. Rdg. R _c	% Finer P	% Adjusted Finer P _A
09/15	4:06 PM	0	25	55	56	7.1	0.01326	0	+1.3	1.018	-	-	-
	4:07	1	25	47	48	8.6	0.01.326	0.03029	+1.3	1.018	42.3	86.1	37.8
	4:08	2	25	42	43	9.2	0.01326	0.02844	+1.3	1.018	37.3	75 .9	33.3
	4:10	4	25	40	41	9.6	0.01.326	0.02054	+1.3	1.018	35.3	71.9	31.6
	4:14	8	25	37	38	10.1	0.01326	0.01490	+1.3	1.018	32.3	65.8	28.6
	4:22	16	25	32	33	10.9	0.01.326	0.01094	+1.3	1.018	27.3	55.6	24.1
	4:40	34	25	28	29	11.5	0.01326	0.00771	+1.3	1.018	23.3	47.4	20.8
	6:22	136	23	22	23	12.5	0.01356	0.00411	+0. 7	1.018	16. 7	34	14.9
09/16	5:24 PM	1518	22	15	16	13. 7	0.01366	0.00130	+0.4	1.018	9.4	19.1	8.4

Unified Classification of Soil: <u>sc/sm</u>

BLANK DATA SHEETS

Grain Size Analysis

Sieve Analysis


Date Tested: Tested By: Project Name: Sample Number: Visual Classification of Soil:

Weight of Container:	gm
Wt. Container+Dry Soil:	gm
Wt. of Dry Sample:	gm

Sieve Number	Diameter (mm)	Mass of Empty Sieve (g)	Mass of Sieve+Soil Retained (g)	Soil Retained (g)	Percent Retained	Percent Passing
4	4.75					
10	2.0					
20	0.84					
40	0.425					
60	0. 25					
140	0.106					
200	0.075					
Pan						

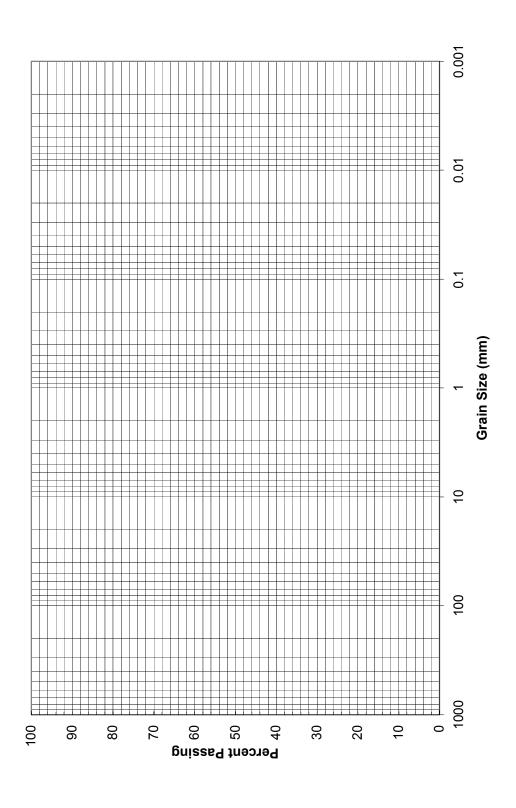
* Percent passing=100-cumulative percent retained.

From Grain Size Distribution Curve:

Unified Classification of Soil:

Hydrometer Analysis

Test Date: _____ Tested By: _____ Hydrometer Number (if known): _____ Specific Gravity of Solids: _____ Dispersing Agent: _____ Weight of Soil Sample: _____gm


Zero Correction: Meniscus Correction:

Date	Time	Elapsed Time (min)	Temp. ^o C	Actual Hydro. Rdg. R _a	Hyd. Corr. for Meniscus	L from Table 1	K from Table 2	D mm	C _T from Table 3	a from Table 4	Corr. Hydr. Rdg. R _c	% Finer P	% Adjusted Finer P _A

Unified Classification of Soil:

Engineering Properties of Soils Based on Laboratory Testing Prof. Krishna Reddy, UIC

Note: You can plot your data on this graph or generate similar graph using any graphics program (e.g., excel)

